Showcase Applications
RingKernel includes five comprehensive showcase applications demonstrating GPU-accelerated computing with the actor model. Each showcases different aspects of the framework.
WaveSim - 2D Acoustic Wave Simulation

Interactive wave propagation simulator implementing the Finite-Difference Time-Domain (FDTD) method.
Key Features
- Tile-based Actor Model: 16x16 cell tiles as actors with K2K messaging for halo exchange
- Educational Modes: Visualize computing paradigms from 1950s sequential to modern parallel
- Multi-backend: CPU (SoA + SIMD + Rayon), CUDA, and WGPU
Performance
| Backend | 256x256 | 512x512 |
|---|---|---|
| CPU SimulationGrid | 35,418 steps/s | 7,229 steps/s |
| CUDA Packed | 112,837 steps/s | 71,324 steps/s |
GPU vs CPU speedup: 3.1x at 256x256, 9.9x at 512x512
Run It
cargo run -p ringkernel-wavesim --release
Click anywhere on the canvas to inject wave impulses.
WaveSim3D - 3D Acoustic Wave Simulation
Comprehensive 3D acoustic wave simulation with realistic physics, binaural audio, and volumetric visualization.
Key Features
- Realistic 3D Physics: Temperature-dependent speed of sound, ISO 9613-1 atmospheric absorption, multiple media (air, water, metal)
- 3D FDTD Solver: 7-point stencil Laplacian with CFL stability, absorbing boundary conditions
- Binaural Audio: Virtual head with ITD/ILD modeling, realistic ear spacing (~17cm)
- Two GPU Computation Methods:
- Stencil: Traditional shared memory tiling for maximum throughput
- Actor: Cell-as-actor paradigm with message-based halo exchange and HLC
Visualization
- Volumetric Ray Marching: Real-time 3D pressure field rendering
- Slice Views: XY, XZ, and YZ plane cuts through the volume
- Interactive Camera: Orbit, pan, and zoom controls
- Source/Listener Markers: Visual feedback for audio positioning
Audio Sources
| Type | Description |
|---|---|
| Impulse | Click/clap transients |
| Tone | Continuous sine wave |
| Chirp | Frequency sweep |
| Noise | White/pink noise |
| Gaussian | Gaussian pulse |
| WAV File | Audio file playback |
Throughput Performance
| Grid Size | Backend | Performance |
|---|---|---|
| 64³ cells | CPU (Rayon) | ~120 steps/sec |
| 64³ cells | CUDA | ~2000 steps/sec |
| 128³ cells | CUDA | ~400 steps/sec |
Interactive Performance (Persistent vs Traditional)
The interactive benchmark demonstrates when persistent GPU actors excel:
| Operation | Traditional | Persistent | Winner |
|---|---|---|---|
| Inject command | 317 µs | 0.03 µs | Persistent 11,327x |
| Query state | 0.01 µs | 0.01 µs | Tie |
| Single step | 3.2 µs | 163 µs | Traditional 51x |
| Mixed workload | 40.5 ms | 15.3 ms | Persistent 2.7x |
Key insight: Persistent actors excel at interactive command latency. Commands are written directly to mapped memory without kernel launch overhead. For real-time 60 FPS applications, persistent actors allow 2.7x more operations per frame.
Run It
# CPU backend
cargo run -p ringkernel-wavesim3d --release
# With CUDA acceleration
cargo run -p ringkernel-wavesim3d --release --features cuda
# Throughput benchmark (cells/second)
cargo run -p ringkernel-wavesim3d --bin wavesim3d-benchmark --release --features cuda-codegen
# Interactive benchmark (latency comparison)
cargo run -p ringkernel-wavesim3d --bin interactive-benchmark --release --features cuda-codegen
Controls
| Key | Action |
|---|---|
| Space | Play/Pause |
| R | Reset simulation |
| I | Inject impulse |
| 1/2/3 | Toggle XY/XZ/YZ slice |
| Mouse | Orbit/Pan/Zoom camera |
TxMon - Transaction Monitoring

Real-time transaction monitoring for banking/AML compliance scenarios with GPU-accelerated rule evaluation.
Key Features
- Transaction Factory: Configurable synthetic generation with realistic patterns
- Compliance Rules: Velocity breach, amount threshold, structuring detection
- Three GPU Approaches:
- Batch Kernel: Maximum throughput (~93B elem/sec)
- Ring Kernel: Persistent actors with HLC and K2K messaging
- Stencil Kernel: Pattern detection in transaction networks
Performance
| Operation | Throughput |
|---|---|
| Batch Kernel | ~93B elem/sec |
| Pattern Detection | ~15.7M TPS |
Run It
cargo run -p ringkernel-txmon --release
AccNet - Accounting Network Analytics

GPU-accelerated accounting network analysis transforming double-entry bookkeeping into graph analytics.
Key Features
- Network Visualization: Interactive graph showing account relationships and money flows
- Fraud Detection: Circular flows, threshold clustering, Benford’s Law violations
- GAAP Compliance: Automated detection of accounting rule violations
- Temporal Analysis: Seasonality, trends, behavioral anomalies
GPU Kernels
- Suspense Detection: Identifies suspicious clearing accounts
- GAAP Violation: Checks for improper account pairings
- Benford Analysis: Statistical analysis of first-digit distribution
- PageRank: Network centrality and influence analysis
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Data Fabric │────>│ GPU Kernels │────>│ Visualization │
│ (Synthetic Gen) │ │ (CUDA/WGSL) │ │ (egui Canvas) │
└─────────────────┘ └──────────────────┘ └────────────────┘
Run It
# CPU backend
cargo run -p ringkernel-accnet --release
# With CUDA GPU acceleration
cargo run -p ringkernel-accnet --release --features cuda
ProcInt - Process Intelligence

GPU-accelerated process mining for discovering, analyzing, and monitoring business processes from event logs.
Key Features
- DFG Mining: Directly-Follows Graph construction from event streams with GPU acceleration
- Pattern Detection: Bottlenecks, loops, rework, and long-running activities
- Conformance Checking: Fitness and precision metrics against reference models
- Timeline View: Partial order traces with concurrent activity visualization
- Multi-Sector: Healthcare, Manufacturing, Finance, and IT process templates
GPU Kernels
- DFG Construction: Builds directly-follows graph from event stream (batch kernel)
- Pattern Detection: Identifies process patterns like bottlenecks and loops
- Partial Order Derivation: Builds precedence matrix from interval events (stencil kernel)
- Conformance Checking: Validates traces against reference models
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌────────────────┐
│ Data Fabric │────>│ GPU Kernels │────>│ Visualization │
│ (Event Stream) │ │ (DFG/Pattern) │ │ (egui Canvas) │
└─────────────────┘ └──────────────────┘ └────────────────┘
│ │ │
Sector Templates 4 Kernel Types Force-directed
Anomaly Injection CPU/CUDA fallback DFG + Timeline
Performance
| Operation | Throughput |
|---|---|
| DFG Construction | ~47K events/sec |
| Pattern Detection | ~3.8M elements/sec |
Run It
# CPU backend
cargo run -p ringkernel-procint --release
# Run benchmark
cargo run -p ringkernel-procint --bin procint-benchmark --release
Common Patterns Across Showcases
All five applications demonstrate RingKernel’s core capabilities:
| Pattern | WaveSim | WaveSim3D | TxMon | AccNet | ProcInt |
|---|---|---|---|---|---|
| GPU Actor Model | Tile actors | Cell actors | Ring kernels | Analysis actors | DFG/Pattern kernels |
| K2K Messaging | Halo exchange | 3D halo exchange | Multi-stage pipeline | Network analysis | Kernel coordination |
| Real-time GUI | iced canvas | wgpu + egui | iced dashboard | egui graph canvas | egui DFG + Timeline |
| Multi-backend | CPU/CUDA/WGPU | CPU/CUDA | CPU/CUDA | CPU/CUDA | CPU/CUDA |
| HLC Timestamps | Tile ordering | Cell ordering | Transaction ordering | Event ordering | Trace ordering |
| Visualization | 2D pressure | 3D volume + slices | Alerts dashboard | Network graph | DFG + Timeline |
Build All Showcases
# All showcases, CPU only
cargo build -p ringkernel-wavesim -p ringkernel-wavesim3d -p ringkernel-txmon -p ringkernel-accnet -p ringkernel-procint --release
# With CUDA support
cargo build -p ringkernel-wavesim -p ringkernel-wavesim3d -p ringkernel-txmon -p ringkernel-accnet -p ringkernel-procint --release --features cuda