Banking
Crate: rustkernel-banking
Kernels: 1
Feature: banking
Specialized banking operations kernel for fraud detection.
Kernel Overview
| Kernel | ID | Modes | Description |
|---|---|---|---|
| FraudPatternMatch | banking/fraud-pattern-match | Batch, Ring | Real-time fraud detection |
Kernel Details
FraudPatternMatch
GPU-accelerated fraud pattern detection using behavioral analysis and rule matching.
ID: banking/fraud-pattern-match
Modes: Batch, Ring
Throughput: ~500,000 transactions/sec
Input
pub struct FraudPatternInput {
/// Transactions to analyze
pub transactions: Vec<Transaction>,
/// Pattern rules to apply
pub rules: Vec<FraudRule>,
/// Historical behavior profiles
pub profiles: HashMap<String, BehaviorProfile>,
/// Detection threshold
pub threshold: f64,
}
pub struct Transaction {
pub id: String,
pub account_id: String,
pub amount: f64,
pub currency: String,
pub merchant_category: String,
pub location: Option<GeoLocation>,
pub timestamp: u64,
pub channel: TransactionChannel,
}
pub struct BehaviorProfile {
pub avg_transaction_amount: f64,
pub typical_merchants: Vec<String>,
pub typical_locations: Vec<GeoLocation>,
pub typical_hours: Vec<u8>,
}
pub enum TransactionChannel {
CardPresent,
CardNotPresent,
ATM,
Wire,
ACH,
}
Output
pub struct FraudPatternOutput {
/// Fraud scores per transaction
pub scores: Vec<TransactionScore>,
/// Triggered rules
pub triggered_rules: Vec<TriggeredRule>,
/// Recommended actions
pub actions: Vec<RecommendedAction>,
}
pub struct TransactionScore {
pub transaction_id: String,
pub fraud_score: f64,
pub risk_factors: Vec<RiskFactor>,
pub recommendation: Recommendation,
}
pub enum Recommendation {
Approve,
Review,
Decline,
Challenge, // 3D Secure, OTP, etc.
}
Example
use rustkernel::banking::fraud::{FraudPatternMatch, FraudPatternInput};
let kernel = FraudPatternMatch::new();
let result = kernel.execute(FraudPatternInput {
transactions: vec![
Transaction {
id: "TX001".into(),
account_id: "ACC123".into(),
amount: 5000.0,
currency: "USD".into(),
merchant_category: "ELECTRONICS".into(),
location: Some(GeoLocation { lat: 40.7128, lon: -74.0060 }),
timestamp: 1699000000,
channel: TransactionChannel::CardNotPresent,
},
],
rules: default_rules(),
profiles: customer_profiles,
threshold: 0.7,
}).await?;
for score in result.scores {
if score.fraud_score > 0.7 {
println!("High risk: {} - score {:.2}",
score.transaction_id,
score.fraud_score
);
for factor in score.risk_factors {
println!(" - {:?}", factor);
}
}
}
Detection Methods
Behavioral Analysis
Compares transactions against established customer behavior:
- Amount deviation: Transaction size vs historical average
- Location deviation: Geographic distance from typical locations
- Time deviation: Transaction time vs typical activity hours
- Merchant deviation: New merchant category or type
Rule-Based Detection
Configurable rules for known fraud patterns:
pub struct FraudRule {
pub id: String,
pub name: String,
pub conditions: Vec<RuleCondition>,
pub score_impact: f64,
pub enabled: bool,
}
pub enum RuleCondition {
AmountGreaterThan(f64),
VelocityExceeds { count: u32, window_seconds: u64 },
LocationMismatch { max_distance_km: f64 },
NewMerchant,
HighRiskCountry(Vec<String>),
CardNotPresentHighValue,
}
Velocity Checks
Detects rapid transaction patterns:
- Multiple transactions in short time
- Multiple cards on same device
- Multiple devices for same card
Ring Mode for Real-Time Scoring
Ring mode enables sub-millisecond fraud scoring:
use rustkernel::banking::fraud::FraudPatternRing;
let ring = FraudPatternRing::new();
// Pre-load customer profiles
ring.load_profiles(profiles).await?;
// Score transactions in real-time
async fn score_transaction(tx: Transaction) -> FraudDecision {
let score = ring.score(tx).await?;
match score.fraud_score {
s if s < 0.3 => FraudDecision::Approve,
s if s < 0.7 => FraudDecision::Review,
_ => FraudDecision::Decline,
}
}
Integration Patterns
Authorization Flow
// In payment authorization path
async fn authorize(tx: Transaction) -> AuthResult {
// 1. Real-time fraud scoring (< 100ms)
let fraud_result = fraud_ring.score(tx.clone()).await?;
if fraud_result.recommendation == Recommendation::Decline {
return AuthResult::Declined("Fraud risk");
}
if fraud_result.recommendation == Recommendation::Challenge {
return AuthResult::Challenge3DS;
}
// 2. Continue with authorization
process_authorization(tx).await
}
Batch Analysis
// Daily fraud pattern review
async fn daily_fraud_review() {
let transactions = load_day_transactions().await?;
let result = fraud_kernel.execute(FraudPatternInput {
transactions,
rules: all_rules(),
profiles: all_profiles(),
threshold: 0.5, // Lower threshold for review
}).await?;
// Generate suspicious activity report
generate_sar_report(result.scores.filter(|s| s.fraud_score > 0.5));
}
Performance Considerations
- Profile caching: Keep frequently accessed profiles in GPU memory
- Rule optimization: Order rules by selectivity (most filtering first)
- Batch when possible: Process multiple transactions per GPU call
- Async patterns: Don’t block authorization on slow operations