Table of Contents

Ring Kernel Messaging and Telemetry: Production-Grade GPU Communication

Executive Summary

The Ring Kernel messaging and telemetry subsystem provides production-grade inter-kernel communication and real-time health monitoring for persistent GPU workloads. These features enable sophisticated distributed actor systems, message-driven architectures, and observable GPU applications with sub-microsecond overhead.

Key Capabilities:

  • GPU-Accelerated Message Queues: Lock-free atomic operations with 4 backpressure strategies
  • Real-Time Telemetry: Sub-microsecond zero-copy polling for GPU health monitoring
  • Cross-Backend Support: CUDA, OpenCL, Metal, and CPU implementations
  • Production Observability: OpenTelemetry integration and comprehensive diagnostics
  • Roslyn Analyzers: Real-time IDE feedback for correct API usage

Table of Contents

  1. Message Queue Architecture
  2. Telemetry System Design
  3. Implementation Details
  4. Performance Characteristics
  5. Production Integration
  6. Best Practices

Message Queue Architecture

Overview

Ring Kernel message queues provide reliable inter-kernel communication with GPU-native atomic operations, enabling distributed actor systems and event-driven architectures directly on GPU hardware.

Design Principles:

  • Lock-Free Atomics: atomicAdd, atomicCAS, atomicExch for thread-safe queue operations
  • Circular Buffering: Power-of-2 capacity for efficient modulo operations
  • Zero-Copy: Messages stored directly in GPU-accessible memory
  • Backpressure Handling: Four strategies for queue overflow scenarios

Message Structure

The IRingKernelMessage interface defines the serialization contract:

public interface IRingKernelMessage
{
    /// <summary>
    /// Serialize message to byte array for GPU transfer.
    /// Must be deterministic and thread-safe.
    /// </summary>
    byte[] Serialize();

    /// <summary>
    /// Deserialize message from byte array after GPU transfer.
    /// Must handle corrupted or partial data gracefully.
    /// </summary>
    void Deserialize(byte[] data);

    /// <summary>
    /// Total serialized size in bytes (including 4-byte UTF-8 length prefix).
    /// Used for capacity planning and buffer allocation.
    /// </summary>
    int PayloadSize { get; }
}

Implementation Requirements:

  1. Deterministic Serialization: Same object must produce identical byte arrays
  2. Thread Safety: Serialization must be safe for concurrent calls
  3. Error Handling: Deserialization must handle partial/corrupted data
  4. Size Calculation: PayloadSize = UTF-8 payload length + 4-byte length prefix

Queue Configuration

Ring Kernel message queues are configured via the RingKernelLaunchOptions class (v0.5.3+), which provides comprehensive control over queue behavior:

public sealed class RingKernelLaunchOptions
{
    /// <summary>
    /// Queue capacity (power of 2, range: 16-1048576).
    /// Larger capacities reduce overflow but increase memory usage.
    /// Default: 4096 messages (production-optimized)
    /// </summary>
    public int QueueCapacity { get; set; } = 4096;

    /// <summary>
    /// Deduplication window size (range: 16-1024 messages).
    /// Prevents duplicate messages within the sliding window.
    /// Default: 1024 messages (maximum validated size)
    /// </summary>
    public int DeduplicationWindowSize { get; set; } = 1024;

    /// <summary>
    /// Backpressure strategy for queue overflow scenarios.
    /// Default: Block (wait for space, guaranteed delivery)
    /// </summary>
    public BackpressureStrategy BackpressureStrategy { get; set; } = BackpressureStrategy.Block;

    /// <summary>
    /// Enable priority-based message ordering.
    /// Default: false (FIFO maximizes throughput)
    /// </summary>
    public bool EnablePriorityQueue { get; set; } = false;

    /// <summary>
    /// Validates configuration and throws if invalid.
    /// Auto-clamps DeduplicationWindowSize to QueueCapacity if smaller.
    /// </summary>
    public void Validate() { /* Implementation */ }

    /// <summary>
    /// Converts to MessageQueueOptions for queue creation.
    /// </summary>
    public MessageQueueOptions ToMessageQueueOptions() { /* Implementation */ }
}

Factory Methods (Recommended):

// Production defaults (4096 capacity, Block backpressure)
var options = RingKernelLaunchOptions.ProductionDefaults();

// Low-latency defaults (256 capacity, Reject backpressure)
var options = RingKernelLaunchOptions.LowLatencyDefaults();

// High-throughput defaults (16384 capacity, Block backpressure)
var options = RingKernelLaunchOptions.HighThroughputDefaults();

Backpressure Strategies

Four strategies handle queue overflow conditions:

1. Block (Default)

Behavior: Producer blocks until queue has space Use Case: Reliable delivery, no message loss acceptable Performance: May cause producer stalls under high load

var options = new RingKernelLaunchOptions
{
    QueueCapacity = 4096,
    BackpressureStrategy = BackpressureStrategy.Block
};

// Launch kernel with Block strategy
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);

// Producer blocks if queue full
await queue.EnqueueAsync(message, ct); // May wait indefinitely

2. Reject

Behavior: Enqueue fails immediately if queue full Use Case: Fire-and-forget messaging, best-effort delivery Performance: No blocking, predictable latency

var options = RingKernelLaunchOptions.LowLatencyDefaults();
// QueueCapacity: 256, BackpressureStrategy: Reject

await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);

// Returns false if queue full, no blocking
if (!await queue.TryEnqueueAsync(message, ct))
{
    _logger.LogWarning("Message rejected: queue full");
}

3. DropOldest

Behavior: Evict oldest message to make space for new message Use Case: Real-time telemetry, latest data most important Performance: No blocking, always succeeds

var options = new RingKernelLaunchOptions
{
    QueueCapacity = 512,
    BackpressureStrategy = BackpressureStrategy.DropOldest,
    DeduplicationWindowSize = 256  // Recent duplicate detection
};

await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);

// Always succeeds, may drop oldest message
await queue.EnqueueAsync(message, ct);

4. DropNew

Behavior: Discard new message if queue full Use Case: Historical logging, preserve oldest data Performance: No blocking, enqueue returns false

var options = new RingKernelLaunchOptions
{
    QueueCapacity = 1024,
    BackpressureStrategy = BackpressureStrategy.DropNew
};

await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);

// Silently drops new message if queue full
bool enqueued = await queue.TryEnqueueAsync(message, ct);

Deduplication

Message deduplication prevents duplicate processing using a sliding window:

var options = new RingKernelLaunchOptions
{
    QueueCapacity = 4096,
    DeduplicationWindowSize = 1024,  // Track last 1024 messages (maximum)
    BackpressureStrategy = BackpressureStrategy.Block
};

await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);

// Duplicate messages within window are silently dropped
await queue.EnqueueAsync(message1, ct); // Enqueued
await queue.EnqueueAsync(message1, ct); // Dropped (duplicate)
await queue.EnqueueAsync(message2, ct); // Enqueued

Implementation Details:

  • Window Size: Configurable 16-1024 messages (default: 1024 = maximum validated size)
  • Hash Function: FNV-1a 32-bit hash of serialized payload
  • Collision Handling: Birthday paradox: <0.1% collision rate at 1024 messages
  • Performance Impact: ~5ns per enqueue for hash calculation
  • Auto-Clamping: Window size automatically clamped to QueueCapacity if QueueCapacity < 1024
  • Memory Cost: ~32 bytes × DeduplicationWindowSize per queue

Named Queues

Multiple queues per Ring Kernel enable parallel message streams. All queues share the same RingKernelLaunchOptions configuration (v0.5.3+):

// Configure queue behavior (applies to ALL queues)
var options = new RingKernelLaunchOptions
{
    QueueCapacity = 4096,              // Shared capacity for all queues
    DeduplicationWindowSize = 1024,     // Shared deduplication window
    BackpressureStrategy = BackpressureStrategy.Block,  // Shared backpressure strategy
    EnablePriorityQueue = false         // Shared priority setting
};

// Create Ring Kernel runtime with MessageQueueRegistry
var registry = new MessageQueueRegistry();
var runtime = new CudaRingKernelRuntime(logger, compiler, registry);

// Launch kernel with shared queue configuration
await runtime.LaunchAsync("my_kernel", gridSize: 128, blockSize: 256, options);

// Named queues are created automatically by the runtime
// using the configuration from RingKernelLaunchOptions

// Enqueue to specific named queues
await wrapper.EnqueueAsync("commands", commandMessage, ct);
await wrapper.EnqueueAsync("events", eventMessage, ct);
await wrapper.EnqueueAsync("telemetry", telemetryMessage, ct);

// Dequeue from specific named queues
var command = await wrapper.DequeueAsync<CommandMessage>("commands", ct);
var event = await wrapper.DequeueAsync<EventMessage>("events", ct);

Registry Management:

  • Automatic Registration: Source generator registers all named queues with MessageQueueRegistry
  • Thread-Safe Access: MessageQueueRegistry provides concurrent queue access via GetQueue(name)
  • Shared Configuration: All queues use the same RingKernelLaunchOptions settings
  • Lifetime Management: Queues disposed automatically when Ring Kernel terminates
  • Cross-Backend: Registry works identically across CUDA, OpenCL, Metal, and CPU backends

GPU Kernel Integration

Message queues integrate seamlessly with CUDA/OpenCL/Metal kernels:

CUDA Example (C++):

__global__ void processingKernel(
    MessageQueue* queue,
    int* results,
    int resultCount)
{
    int tid = threadIdx.x + blockIdx.x * blockDim.x;

    // Dequeue message atomically
    Message msg;
    if (queue->dequeue(&msg))
    {
        // Process message
        int result = processMessage(&msg);

        // Store result atomically
        if (tid < resultCount)
        {
            atomicExch(&results[tid], result);
        }
    }
}

OpenCL Example (C):

__kernel void processingKernel(
    __global MessageQueue* queue,
    __global int* results,
    int resultCount)
{
    int tid = get_global_id(0);

    // Dequeue message atomically
    Message msg;
    if (dequeueMessage(queue, &msg))
    {
        // Process message
        int result = processMessage(&msg);

        // Store result atomically
        if (tid < resultCount)
        {
            atomic_xchg(&results[tid], result);
        }
    }
}

Telemetry System Design

Overview

The Ring Kernel telemetry subsystem provides sub-microsecond real-time monitoring of GPU health metrics via zero-copy memory polling. This enables production-grade observability for long-running GPU applications without impacting performance.

Architecture Goals:

  • <1μs Polling Latency: Direct memory reads, no GPU synchronization
  • Zero Copy: CPU reads GPU-written telemetry buffers directly
  • Lazy Initialization: Buffers allocated only when telemetry enabled
  • Atomic Updates: Thread-safe concurrent counter updates
  • IDE Integration: Roslyn analyzers prevent common API misuse

Telemetry Struct

The RingKernelTelemetry struct is a 64-byte cache-aligned structure:

[StructLayout(LayoutKind.Sequential, Pack = 8)]
public struct RingKernelTelemetry
{
    /// <summary>Total messages processed (atomic counter)</summary>
    public ulong MessagesProcessed;

    /// <summary>Messages dropped due to queue overflow (atomic counter)</summary>
    public ulong MessagesDropped;

    /// <summary>Current queue depth (pending messages)</summary>
    public int QueueDepth;

    /// <summary>Reserved for alignment (padding)</summary>
    public int Reserved1;

    /// <summary>GPU timestamp of last processed message (nanoseconds)</summary>
    public long LastProcessedTimestamp;

    /// <summary>Reserved for future counters (32 bytes padding)</summary>
    [MarshalAs(UnmanagedType.ByValArray, SizeConst = 32)]
    public byte[] Reserved2;
}

Design Rationale:

  • 64 bytes: Cache line alignment prevents false sharing
  • Sequential layout: Consistent memory layout for GPU interop
  • Atomic counters: MessagesProcessed/MessagesDropped updated via Interlocked.Add
  • Reserved fields: Future extensibility (latency percentiles, error counts)

Backend Memory Strategies

CUDA: Pinned Host Memory

Memory Type: cuMemHostAlloc with CU_MEMHOSTALLOC_DEVICEMAP Polling Latency: <1μs (measured on RTX 2000 Ada) Characteristics:

  • Pinned host memory prevents OS paging
  • Write-combined for faster GPU→CPU transfers
  • Device-mapped for zero-copy CPU access

Implementation:

// CudaTelemetryBuffer.cs
var result = CudaNative.cuMemHostAlloc(
    out _hostPointer,
    (nuint)Marshal.SizeOf<RingKernelTelemetry>(),
    CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);

// Map to GPU-accessible address
CudaNative.cuMemHostGetDevicePointer(out _devicePointer, _hostPointer, 0);

// Zero-copy poll
public async ValueTask<RingKernelTelemetry> PollAsync()
{
    unsafe
    {
        var ptr = (RingKernelTelemetry*)_hostPointer;
        return *ptr; // Single memory read, no synchronization
    }
}

OpenCL: Mapped Pinned Memory

Memory Type: clCreateBuffer with CL_MEM_ALLOC_HOST_PTR Polling Latency: <1μs (measured on NVIDIA GPU) Characteristics:

  • Pinned allocation via CL_MEM_ALLOC_HOST_PTR
  • Persistent mapping for zero-copy access
  • Read-only mapping optimizes for CPU polling

Implementation:

// OpenCLTelemetryBuffer.cs
var flags = MemFlags.CL_MEM_ALLOC_HOST_PTR | MemFlags.CL_MEM_READ_WRITE;
_bufferObject = OpenCLNative.clCreateBuffer(
    _context, flags,
    (nuint)Marshal.SizeOf<RingKernelTelemetry>(),
    IntPtr.Zero, out var result);

// Map once at initialization
_mappedPointer = OpenCLNative.clEnqueueMapBuffer(
    _commandQueue, _bufferObject,
    blocking: true, MapFlags.CL_MAP_READ,
    offset: 0, size: (nuint)Marshal.SizeOf<RingKernelTelemetry>(),
    numEventsInWaitList: 0, eventWaitList: null,
    outEvent: out _, out result);

// Zero-copy poll
public async ValueTask<RingKernelTelemetry> PollAsync()
{
    unsafe
    {
        var ptr = (RingKernelTelemetry*)_mappedPointer;
        return *ptr; // Direct read from mapped memory
    }
}

Metal: Shared Memory (Unified Memory Architecture)

Memory Type: MTLStorageMode.Shared Polling Latency: <0.5μs (measured on M1 Max) Characteristics:

  • Unified memory on Apple Silicon
  • CPU and GPU share physical memory
  • No explicit synchronization required
  • Fastest polling latency

Implementation:

// MetalTelemetryBuffer.cs
var length = (nuint)Marshal.SizeOf<RingKernelTelemetry>();
_bufferObject = MetalNative.newBufferWithLength(
    _device, length,
    MTLResourceOptions.StorageModeShared);

_contentsPointer = MetalNative.bufferContents(_bufferObject);

// Zero-copy poll (fastest on unified memory)
public async ValueTask<RingKernelTelemetry> PollAsync()
{
    unsafe
    {
        var ptr = (RingKernelTelemetry*)_contentsPointer;
        return *ptr; // L1 cache hit on unified memory
    }
}

CPU: In-Memory Struct

Memory Type: Heap-allocated struct Polling Latency: <0.1μs (L1 cache) Characteristics:

  • Simplest implementation
  • No GPU interop overhead
  • Useful for testing/simulation

Implementation:

// CpuTelemetryBuffer.cs
private RingKernelTelemetry _telemetry;

public void Allocate()
{
    _telemetry = new RingKernelTelemetry();
}

public async ValueTask<RingKernelTelemetry> PollAsync()
{
    return _telemetry; // Direct struct copy from heap
}

Telemetry API

Three methods are auto-injected into all Ring Kernel wrappers by the source generator:

GetTelemetryAsync

Poll current telemetry snapshot:

// Production monitoring loop (100Hz = 10ms interval)
while (!ct.IsCancellationRequested)
{
    var telemetry = await wrapper.GetTelemetryAsync(ct);

    _logger.LogInformation(
        "Messages: {Processed} processed, {Dropped} dropped, " +
        "Queue: {Depth} pending",
        telemetry.MessagesProcessed,
        telemetry.MessagesDropped,
        telemetry.QueueDepth);

    await Task.Delay(millisecondsDelay: 10, ct);
}

Performance: <1μs latency, zero GPU synchronization

SetTelemetryEnabledAsync

Enable or disable telemetry:

// Enable telemetry after launch
await wrapper.LaunchAsync(blockSize: 256, gridSize: 128, ct);
await wrapper.SetTelemetryEnabledAsync(enabled: true, ct);

// Disable telemetry (buffer persists, avoids reallocation)
await wrapper.SetTelemetryEnabledAsync(enabled: false, ct);

Lazy Initialization: 64-byte GPU buffer allocated on first enable

ResetTelemetryAsync

Reset all counters to zero:

// Reset counters for phased benchmark
await wrapper.ResetTelemetryAsync(ct);

// Run benchmark phase
await RunBenchmarkPhaseAsync(ct);

// Capture results
var telemetry = await wrapper.GetTelemetryAsync(ct);
_logger.LogInformation(
    "Phase completed: {Messages} messages in {Time}ms",
    telemetry.MessagesProcessed, phaseTime.TotalMilliseconds);

Performance: Zero overhead, just memset on pinned memory

Excessive polling degrades system performance. Choose intervals based on use case:

Use Case Interval Frequency CPU Overhead
Background Logging 100ms+ <10 Hz <0.001%
Production Monitoring 10ms 100 Hz 0.01%
Development/Debugging 1ms 1 kHz 0.1%
Stress Testing 100μs 10 kHz 1%

Analyzer Integration (DC014):

The DC014 analyzer warns about excessive polling:

// ❌ BAD: Tight loop triggers DC014 warning
while (true)
{
    var telemetry = await wrapper.GetTelemetryAsync(ct);
    // Process telemetry (no delay!)
}

// ✅ GOOD: 10ms delay (100Hz, production-grade)
while (!ct.IsCancellationRequested)
{
    var telemetry = await wrapper.GetTelemetryAsync(ct);
    await Task.Delay(10, ct); // 10ms = 100Hz
}

Implementation Details

Source Generator Integration

The source generator automatically injects messaging and telemetry APIs into all Ring Kernel wrappers.

Generated Code Example:

// Generated wrapper class (partial)
public sealed partial class MyRingKernelWrapper : IAsyncDisposable
{
    private readonly IRingKernelRuntime _runtime;
    private readonly Guid _kernelId;
    private bool _disposed;
    private bool _isLaunched;

    // ========== MESSAGE QUEUE METHODS ==========

    public async Task EnqueueAsync<TMessage>(
        string queueName,
        TMessage message,
        CancellationToken cancellationToken = default)
        where TMessage : IRingKernelMessage
    {
        ObjectDisposedException.ThrowIf(_disposed, this);
        if (!_isLaunched)
        {
            throw new InvalidOperationException(
                "Ring Kernel must be launched before enqueueing messages.");
        }

        var queue = _runtime.MessageQueueRegistry.GetQueue(queueName);
        await queue.EnqueueAsync(message, cancellationToken)
            .ConfigureAwait(false);
    }

    public async Task<TMessage?> DequeueAsync<TMessage>(
        string queueName,
        CancellationToken cancellationToken = default)
        where TMessage : IRingKernelMessage, new()
    {
        ObjectDisposedException.ThrowIf(_disposed, this);
        if (!_isLaunched)
        {
            throw new InvalidOperationException(
                "Ring Kernel must be launched before dequeuing messages.");
        }

        var queue = _runtime.MessageQueueRegistry.GetQueue(queueName);
        return await queue.DequeueAsync<TMessage>(cancellationToken)
            .ConfigureAwait(false);
    }

    // ========== TELEMETRY METHODS ==========

    public async Task<RingKernelTelemetry> GetTelemetryAsync(
        CancellationToken cancellationToken = default)
    {
        ObjectDisposedException.ThrowIf(_disposed, this);
        if (!_isLaunched)
        {
            throw new InvalidOperationException(
                "Ring Kernel must be launched before polling telemetry.");
        }

        return await _runtime.GetTelemetryAsync(_kernelId, cancellationToken)
            .ConfigureAwait(false);
    }

    public async Task SetTelemetryEnabledAsync(
        bool enabled,
        CancellationToken cancellationToken = default)
    {
        ObjectDisposedException.ThrowIf(_disposed, this);
        if (!_isLaunched)
        {
            throw new InvalidOperationException(
                "Ring Kernel must be launched before enabling telemetry.");
        }

        await _runtime.SetTelemetryEnabledAsync(_kernelId, enabled, cancellationToken)
            .ConfigureAwait(false);
    }

    public async Task ResetTelemetryAsync(
        CancellationToken cancellationToken = default)
    {
        ObjectDisposedException.ThrowIf(_disposed, this);
        if (!_isLaunched)
        {
            throw new InvalidOperationException(
                "Ring Kernel must be launched before resetting telemetry.");
        }

        await _runtime.ResetTelemetryAsync(_kernelId, cancellationToken)
            .ConfigureAwait(false);
    }
}

Roslyn Analyzers

Six diagnostic rules ensure correct API usage:

DC014: TelemetryPollingTooFrequent (Warning)

Detects excessive polling frequency (>10kHz):

// Triggers DC014 warning
while (true)
{
    var telemetry = await wrapper.GetTelemetryAsync(ct);
    // No delay - polling at maximum frequency
}

Fix: Add Task.Delay with appropriate interval (1-10ms recommended)

DC015: TelemetryNotEnabled (Error)

Detects GetTelemetryAsync without prior enable:

// Triggers DC015 error
await wrapper.LaunchAsync(256, 128, ct);
var telemetry = await wrapper.GetTelemetryAsync(ct); // ❌ Buffer not allocated

Fix: Call SetTelemetryEnabledAsync(true) after launch

DC016: TelemetryEnabledBeforeLaunch (Error)

Detects telemetry enabled before kernel launch:

// Triggers DC016 error
var wrapper = new MyRingKernelWrapper(runtime);
await wrapper.SetTelemetryEnabledAsync(true, ct); // ❌ No kernel context
await wrapper.LaunchAsync(256, 128, ct);

Fix: Launch kernel before enabling telemetry

DC017: TelemetryResetWithoutEnable (Warning)

Detects reset without prior enable:

// Triggers DC017 warning
await wrapper.LaunchAsync(256, 128, ct);
await wrapper.ResetTelemetryAsync(ct); // ❌ Buffer not allocated

Fix: Enable telemetry before resetting


Performance Characteristics

Message Queue Performance

Measured on RTX 2000 Ada (Compute Capability 8.9):

Operation Latency Throughput Notes
Enqueue (Block) 2-5μs 200K-500K msg/s Includes atomic operations
Enqueue (Reject) 1-3μs 300K-1M msg/s No blocking, immediate return
Enqueue (DropOldest) 1-3μs 300K-1M msg/s Eviction adds ~1μs
Dequeue 1-3μs 300K-1M msg/s Atomic read + deserialization
Deduplication +5ns Negligible FNV-1a hash overhead

Memory Overhead:

  • Queue Structure: 64 bytes (head/tail/capacity/metadata)
  • Message Storage: Capacity × MaxMessageSize bytes
  • Deduplication: DeduplicationWindow × 4 bytes (hash table)

Example: 256-message queue with 1KB max size = 64 + (256 × 1024) = 262KB GPU memory

Telemetry Performance

Measured across all backends:

Backend Polling Latency Throughput Hardware
CUDA (pinned) 0.82μs 1.2M polls/s RTX 2000 Ada
OpenCL (mapped) 0.91μs 1.1M polls/s RTX 2000 Ada
Metal (shared) 0.45μs 2.2M polls/s M1 Max (unified)
CPU (in-memory) 0.08μs 12.5M polls/s Intel Core i7

Memory Overhead:

  • Telemetry Buffer: 64 bytes per Ring Kernel
  • Lazy Allocation: Zero overhead when telemetry disabled

Polling Overhead (Production 100Hz):

  • 100 polls/second × 0.82μs = 82μs/s = 0.0082% CPU overhead

Scalability

Message Queues:

  • Up to 16 named queues per Ring Kernel
  • Queue capacity: 16-1024 messages (power of 2)
  • Tested with 1M+ messages/second sustained throughput

Telemetry:

  • Tested with 100 concurrent Ring Kernels
  • Aggregate polling: 10,000 polls/second across all kernels
  • Zero contention on unified memory (Metal)

Production Integration

OpenTelemetry Integration

Export telemetry to OpenTelemetry for centralized monitoring:

using OpenTelemetry;
using OpenTelemetry.Metrics;
using System.Diagnostics.Metrics;

public class RingKernelMetrics
{
    private static readonly Meter s_meter = new("DotCompute.RingKernel");

    private readonly ObservableCounter<long> _messagesProcessedCounter;
    private readonly ObservableCounter<long> _messagesDroppedCounter;
    private readonly ObservableGauge<int> _queueDepthGauge;

    private RingKernelTelemetry _lastTelemetry;

    public RingKernelMetrics(MyRingKernelWrapper wrapper)
    {
        _messagesProcessedCounter = s_meter.CreateObservableCounter(
            "dotcompute.ringkernel.messages.processed",
            () => (long)_lastTelemetry.MessagesProcessed,
            description: "Total messages processed");

        _messagesDroppedCounter = s_meter.CreateObservableCounter(
            "dotcompute.ringkernel.messages.dropped",
            () => (long)_lastTelemetry.MessagesDropped,
            description: "Total messages dropped");

        _queueDepthGauge = s_meter.CreateObservableGauge(
            "dotcompute.ringkernel.queue.depth",
            () => _lastTelemetry.QueueDepth,
            description: "Current queue depth");

        _ = PollTelemetryAsync(wrapper);
    }

    private async Task PollTelemetryAsync(MyRingKernelWrapper wrapper)
    {
        while (true)
        {
            _lastTelemetry = await wrapper.GetTelemetryAsync(default);
            await Task.Delay(millisecondsDelay: 100); // 10Hz for OpenTelemetry
        }
    }
}

// Configure OpenTelemetry
var meterProvider = Sdk.CreateMeterProviderBuilder()
    .AddMeter("DotCompute.RingKernel")
    .AddPrometheusExporter()
    .Build();

Orleans.GpuBridge Integration

Integrate with Orleans actor systems for distributed GPU computation:

using Orleans;
using DotCompute.Abstractions.RingKernels;

public class GpuActorGrain : Grain, IGpuActorGrain
{
    private MyRingKernelWrapper _wrapper = null!;
    private CancellationTokenSource _monitoringCts = null!;

    public override async Task OnActivateAsync(CancellationToken ct)
    {
        var runtime = GrainFactory.GetGrain<IRingKernelRuntime>(0);

        // Launch Ring Kernel
        _wrapper = new MyRingKernelWrapper(runtime);
        await _wrapper.LaunchAsync(blockSize: 256, gridSize: 128, ct);

        // Enable telemetry
        await _wrapper.SetTelemetryEnabledAsync(enabled: true, ct);

        // Start monitoring loop
        _monitoringCts = new CancellationTokenSource();
        _ = MonitorTelemetryAsync(_monitoringCts.Token);

        await base.OnActivateAsync(ct);
    }

    public async Task<int> ProcessMessageAsync(ActorMessage message)
    {
        // Enqueue message to GPU
        await _wrapper.EnqueueAsync("commands", message, default);

        // Dequeue result
        var result = await _wrapper.DequeueAsync<ActorResult>("results", default);
        return result?.Value ?? -1;
    }

    private async Task MonitorTelemetryAsync(CancellationToken ct)
    {
        while (!ct.IsCancellationRequested)
        {
            var telemetry = await _wrapper.GetTelemetryAsync(ct);

            if (telemetry.MessagesDropped > 0)
            {
                Logger.LogWarning(
                    "Grain {GrainId}: {Dropped} messages dropped",
                    this.GetPrimaryKeyLong(), telemetry.MessagesDropped);
            }

            await Task.Delay(millisecondsDelay: 1000, ct); // 1Hz for Orleans
        }
    }

    public override async Task OnDeactivateAsync(DeactivationReason reason, CancellationToken ct)
    {
        _monitoringCts.Cancel();
        await _wrapper.DisposeAsync();
        await base.OnDeactivateAsync(reason, ct);
    }
}

Best Practices

Message Queue Best Practices

  1. Choose Appropriate Backpressure Strategy

    • Block: Use for critical messages requiring guaranteed delivery
    • Reject: Use for fire-and-forget, best-effort scenarios
    • DropOldest: Use for real-time telemetry where latest data matters
    • DropNew: Use for historical logging preserving oldest data
  2. Size Queues Appropriately

    • Too Small: Frequent overflow, message loss
    • Too Large: Excessive memory usage, stale data
    • Rule of Thumb: 2× peak message rate × polling interval
    • Example: 1000 msg/s × 10ms = 10 messages minimum, use 32-64 for safety
  3. Enable Deduplication Judiciously

    • Cost: 5ns per enqueue, negligible for most workloads
    • Benefit: Prevents duplicate processing in retry scenarios
    • Window Size: Set to 2-4× max expected burst size
    • Disable: If messages are guaranteed unique or cost-sensitive
  4. Serialize Efficiently

    • Avoid Reflection: Use explicit field serialization
    • Fixed-Size Preferred: Reduces buffer management overhead
    • Validate Deserialization: Handle partial/corrupted data gracefully

Telemetry Best Practices

  1. Enable Telemetry Only When Needed

    • 64-byte GPU allocation per Ring Kernel
    • Zero overhead when disabled (lazy initialization)
    • Consider production vs. development profiles
  2. Poll at Appropriate Intervals

    • Production: 10ms (100Hz) - 0.01% CPU overhead
    • Development: 1ms (1kHz) - 0.1% CPU overhead
    • Avoid: <100μs (>10kHz) - triggers DC014 warning
  3. Monitor for Anomalies

    • MessagesDropped > 0: Queue overflow, increase capacity or adjust backpressure
    • QueueDepth consistently high: Producer faster than consumer, scale consumers
    • MessagesProcessed stagnant: Ring Kernel may be stalled, check GPU status
  4. Reset Counters Between Phases

    • Use ResetTelemetryAsync for phased benchmarks
    • Provides clean metrics per test iteration
    • Zero overhead operation
  5. Integrate with Observability Stack

    • Export to OpenTelemetry for centralized monitoring
    • Set up alerts for MessagesDropped spikes
    • Track MessagesProcessed rate for throughput metrics

Error Handling

// Robust message processing with error handling
public async Task ProcessMessagesAsync(CancellationToken ct)
{
    while (!ct.IsCancellationRequested)
    {
        try
        {
            // Dequeue with timeout
            var cts = CancellationTokenSource.CreateLinkedTokenSource(ct);
            cts.CancelAfter(TimeSpan.FromSeconds(5));

            var message = await _wrapper.DequeueAsync<MyMessage>("commands", cts.Token);
            if (message == null)
            {
                continue; // Queue empty, retry
            }

            // Process message
            var result = await ProcessMessageAsync(message);

            // Enqueue result with backpressure handling
            if (!await _wrapper.TryEnqueueAsync("results", result, ct))
            {
                _logger.LogWarning("Result queue full, message {Id} dropped", message.Id);
            }
        }
        catch (OperationCanceledException)
        {
            _logger.LogInformation("Processing cancelled");
            break;
        }
        catch (Exception ex)
        {
            _logger.LogError(ex, "Error processing message");
            await Task.Delay(millisecondsDelay: 100, ct); // Back off on errors
        }
    }
}

Summary

The Ring Kernel messaging and telemetry subsystem provides production-grade GPU communication and observability:

Messaging Features:

  • Lock-free atomic message queues with 4 backpressure strategies
  • Cross-backend support (CUDA, OpenCL, Metal, CPU)
  • Deduplication, named queues, and flexible configuration
  • Measured throughput: 200K-1M messages/second

Telemetry Features:

  • Sub-microsecond zero-copy polling (<1μs on CUDA/OpenCL, <0.5μs on Metal)
  • Lazy initialization with 64-byte GPU buffers
  • Atomic counters for thread-safe concurrent updates
  • OpenTelemetry integration for production monitoring

Developer Experience:

  • Auto-injected APIs via source generators
  • Roslyn analyzers (DC014-DC017) for real-time IDE feedback
  • Comprehensive documentation and examples
  • Orleans.GpuBridge integration for distributed actor systems

These features enable sophisticated distributed GPU applications, message-driven architectures, and observable long-running GPU workloads with negligible performance overhead.

See Also