Ring Kernel Messaging and Telemetry: Production-Grade GPU Communication
Executive Summary
The Ring Kernel messaging and telemetry subsystem provides production-grade inter-kernel communication and real-time health monitoring for persistent GPU workloads. These features enable sophisticated distributed actor systems, message-driven architectures, and observable GPU applications with sub-microsecond overhead.
Key Capabilities:
- GPU-Accelerated Message Queues: Lock-free atomic operations with 4 backpressure strategies
- Real-Time Telemetry: Sub-microsecond zero-copy polling for GPU health monitoring
- Cross-Backend Support: CUDA, OpenCL, Metal, and CPU implementations
- Production Observability: OpenTelemetry integration and comprehensive diagnostics
- Roslyn Analyzers: Real-time IDE feedback for correct API usage
Table of Contents
- Message Queue Architecture
- Telemetry System Design
- Implementation Details
- Performance Characteristics
- Production Integration
- Best Practices
Message Queue Architecture
Overview
Ring Kernel message queues provide reliable inter-kernel communication with GPU-native atomic operations, enabling distributed actor systems and event-driven architectures directly on GPU hardware.
Design Principles:
- Lock-Free Atomics:
atomicAdd,atomicCAS,atomicExchfor thread-safe queue operations - Circular Buffering: Power-of-2 capacity for efficient modulo operations
- Zero-Copy: Messages stored directly in GPU-accessible memory
- Backpressure Handling: Four strategies for queue overflow scenarios
Message Structure
The IRingKernelMessage interface defines the serialization contract:
public interface IRingKernelMessage
{
/// <summary>
/// Serialize message to byte array for GPU transfer.
/// Must be deterministic and thread-safe.
/// </summary>
byte[] Serialize();
/// <summary>
/// Deserialize message from byte array after GPU transfer.
/// Must handle corrupted or partial data gracefully.
/// </summary>
void Deserialize(byte[] data);
/// <summary>
/// Total serialized size in bytes (including 4-byte UTF-8 length prefix).
/// Used for capacity planning and buffer allocation.
/// </summary>
int PayloadSize { get; }
}
Implementation Requirements:
- Deterministic Serialization: Same object must produce identical byte arrays
- Thread Safety: Serialization must be safe for concurrent calls
- Error Handling: Deserialization must handle partial/corrupted data
- Size Calculation:
PayloadSize= UTF-8 payload length + 4-byte length prefix
Queue Configuration
Ring Kernel message queues are configured via the RingKernelLaunchOptions class (v0.5.3+), which provides comprehensive control over queue behavior:
public sealed class RingKernelLaunchOptions
{
/// <summary>
/// Queue capacity (power of 2, range: 16-1048576).
/// Larger capacities reduce overflow but increase memory usage.
/// Default: 4096 messages (production-optimized)
/// </summary>
public int QueueCapacity { get; set; } = 4096;
/// <summary>
/// Deduplication window size (range: 16-1024 messages).
/// Prevents duplicate messages within the sliding window.
/// Default: 1024 messages (maximum validated size)
/// </summary>
public int DeduplicationWindowSize { get; set; } = 1024;
/// <summary>
/// Backpressure strategy for queue overflow scenarios.
/// Default: Block (wait for space, guaranteed delivery)
/// </summary>
public BackpressureStrategy BackpressureStrategy { get; set; } = BackpressureStrategy.Block;
/// <summary>
/// Enable priority-based message ordering.
/// Default: false (FIFO maximizes throughput)
/// </summary>
public bool EnablePriorityQueue { get; set; } = false;
/// <summary>
/// Validates configuration and throws if invalid.
/// Auto-clamps DeduplicationWindowSize to QueueCapacity if smaller.
/// </summary>
public void Validate() { /* Implementation */ }
/// <summary>
/// Converts to MessageQueueOptions for queue creation.
/// </summary>
public MessageQueueOptions ToMessageQueueOptions() { /* Implementation */ }
}
Factory Methods (Recommended):
// Production defaults (4096 capacity, Block backpressure)
var options = RingKernelLaunchOptions.ProductionDefaults();
// Low-latency defaults (256 capacity, Reject backpressure)
var options = RingKernelLaunchOptions.LowLatencyDefaults();
// High-throughput defaults (16384 capacity, Block backpressure)
var options = RingKernelLaunchOptions.HighThroughputDefaults();
Backpressure Strategies
Four strategies handle queue overflow conditions:
1. Block (Default)
Behavior: Producer blocks until queue has space Use Case: Reliable delivery, no message loss acceptable Performance: May cause producer stalls under high load
var options = new RingKernelLaunchOptions
{
QueueCapacity = 4096,
BackpressureStrategy = BackpressureStrategy.Block
};
// Launch kernel with Block strategy
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);
// Producer blocks if queue full
await queue.EnqueueAsync(message, ct); // May wait indefinitely
2. Reject
Behavior: Enqueue fails immediately if queue full Use Case: Fire-and-forget messaging, best-effort delivery Performance: No blocking, predictable latency
var options = RingKernelLaunchOptions.LowLatencyDefaults();
// QueueCapacity: 256, BackpressureStrategy: Reject
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);
// Returns false if queue full, no blocking
if (!await queue.TryEnqueueAsync(message, ct))
{
_logger.LogWarning("Message rejected: queue full");
}
3. DropOldest
Behavior: Evict oldest message to make space for new message Use Case: Real-time telemetry, latest data most important Performance: No blocking, always succeeds
var options = new RingKernelLaunchOptions
{
QueueCapacity = 512,
BackpressureStrategy = BackpressureStrategy.DropOldest,
DeduplicationWindowSize = 256 // Recent duplicate detection
};
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);
// Always succeeds, may drop oldest message
await queue.EnqueueAsync(message, ct);
4. DropNew
Behavior: Discard new message if queue full Use Case: Historical logging, preserve oldest data Performance: No blocking, enqueue returns false
var options = new RingKernelLaunchOptions
{
QueueCapacity = 1024,
BackpressureStrategy = BackpressureStrategy.DropNew
};
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);
// Silently drops new message if queue full
bool enqueued = await queue.TryEnqueueAsync(message, ct);
Deduplication
Message deduplication prevents duplicate processing using a sliding window:
var options = new RingKernelLaunchOptions
{
QueueCapacity = 4096,
DeduplicationWindowSize = 1024, // Track last 1024 messages (maximum)
BackpressureStrategy = BackpressureStrategy.Block
};
await runtime.LaunchAsync("kernel_id", gridSize: 1, blockSize: 256, options);
// Duplicate messages within window are silently dropped
await queue.EnqueueAsync(message1, ct); // Enqueued
await queue.EnqueueAsync(message1, ct); // Dropped (duplicate)
await queue.EnqueueAsync(message2, ct); // Enqueued
Implementation Details:
- Window Size: Configurable 16-1024 messages (default: 1024 = maximum validated size)
- Hash Function: FNV-1a 32-bit hash of serialized payload
- Collision Handling: Birthday paradox: <0.1% collision rate at 1024 messages
- Performance Impact: ~5ns per enqueue for hash calculation
- Auto-Clamping: Window size automatically clamped to QueueCapacity if QueueCapacity < 1024
- Memory Cost: ~32 bytes × DeduplicationWindowSize per queue
Named Queues
Multiple queues per Ring Kernel enable parallel message streams. All queues share the same RingKernelLaunchOptions configuration (v0.5.3+):
// Configure queue behavior (applies to ALL queues)
var options = new RingKernelLaunchOptions
{
QueueCapacity = 4096, // Shared capacity for all queues
DeduplicationWindowSize = 1024, // Shared deduplication window
BackpressureStrategy = BackpressureStrategy.Block, // Shared backpressure strategy
EnablePriorityQueue = false // Shared priority setting
};
// Create Ring Kernel runtime with MessageQueueRegistry
var registry = new MessageQueueRegistry();
var runtime = new CudaRingKernelRuntime(logger, compiler, registry);
// Launch kernel with shared queue configuration
await runtime.LaunchAsync("my_kernel", gridSize: 128, blockSize: 256, options);
// Named queues are created automatically by the runtime
// using the configuration from RingKernelLaunchOptions
// Enqueue to specific named queues
await wrapper.EnqueueAsync("commands", commandMessage, ct);
await wrapper.EnqueueAsync("events", eventMessage, ct);
await wrapper.EnqueueAsync("telemetry", telemetryMessage, ct);
// Dequeue from specific named queues
var command = await wrapper.DequeueAsync<CommandMessage>("commands", ct);
var event = await wrapper.DequeueAsync<EventMessage>("events", ct);
Registry Management:
- Automatic Registration: Source generator registers all named queues with
MessageQueueRegistry - Thread-Safe Access:
MessageQueueRegistryprovides concurrent queue access viaGetQueue(name) - Shared Configuration: All queues use the same
RingKernelLaunchOptionssettings - Lifetime Management: Queues disposed automatically when Ring Kernel terminates
- Cross-Backend: Registry works identically across CUDA, OpenCL, Metal, and CPU backends
GPU Kernel Integration
Message queues integrate seamlessly with CUDA/OpenCL/Metal kernels:
CUDA Example (C++):
__global__ void processingKernel(
MessageQueue* queue,
int* results,
int resultCount)
{
int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Dequeue message atomically
Message msg;
if (queue->dequeue(&msg))
{
// Process message
int result = processMessage(&msg);
// Store result atomically
if (tid < resultCount)
{
atomicExch(&results[tid], result);
}
}
}
OpenCL Example (C):
__kernel void processingKernel(
__global MessageQueue* queue,
__global int* results,
int resultCount)
{
int tid = get_global_id(0);
// Dequeue message atomically
Message msg;
if (dequeueMessage(queue, &msg))
{
// Process message
int result = processMessage(&msg);
// Store result atomically
if (tid < resultCount)
{
atomic_xchg(&results[tid], result);
}
}
}
Telemetry System Design
Overview
The Ring Kernel telemetry subsystem provides sub-microsecond real-time monitoring of GPU health metrics via zero-copy memory polling. This enables production-grade observability for long-running GPU applications without impacting performance.
Architecture Goals:
- <1μs Polling Latency: Direct memory reads, no GPU synchronization
- Zero Copy: CPU reads GPU-written telemetry buffers directly
- Lazy Initialization: Buffers allocated only when telemetry enabled
- Atomic Updates: Thread-safe concurrent counter updates
- IDE Integration: Roslyn analyzers prevent common API misuse
Telemetry Struct
The RingKernelTelemetry struct is a 64-byte cache-aligned structure:
[StructLayout(LayoutKind.Sequential, Pack = 8)]
public struct RingKernelTelemetry
{
/// <summary>Total messages processed (atomic counter)</summary>
public ulong MessagesProcessed;
/// <summary>Messages dropped due to queue overflow (atomic counter)</summary>
public ulong MessagesDropped;
/// <summary>Current queue depth (pending messages)</summary>
public int QueueDepth;
/// <summary>Reserved for alignment (padding)</summary>
public int Reserved1;
/// <summary>GPU timestamp of last processed message (nanoseconds)</summary>
public long LastProcessedTimestamp;
/// <summary>Reserved for future counters (32 bytes padding)</summary>
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 32)]
public byte[] Reserved2;
}
Design Rationale:
- 64 bytes: Cache line alignment prevents false sharing
- Sequential layout: Consistent memory layout for GPU interop
- Atomic counters:
MessagesProcessed/MessagesDroppedupdated viaInterlocked.Add - Reserved fields: Future extensibility (latency percentiles, error counts)
Backend Memory Strategies
CUDA: Pinned Host Memory
Memory Type: cuMemHostAlloc with CU_MEMHOSTALLOC_DEVICEMAP
Polling Latency: <1μs (measured on RTX 2000 Ada)
Characteristics:
- Pinned host memory prevents OS paging
- Write-combined for faster GPU→CPU transfers
- Device-mapped for zero-copy CPU access
Implementation:
// CudaTelemetryBuffer.cs
var result = CudaNative.cuMemHostAlloc(
out _hostPointer,
(nuint)Marshal.SizeOf<RingKernelTelemetry>(),
CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
// Map to GPU-accessible address
CudaNative.cuMemHostGetDevicePointer(out _devicePointer, _hostPointer, 0);
// Zero-copy poll
public async ValueTask<RingKernelTelemetry> PollAsync()
{
unsafe
{
var ptr = (RingKernelTelemetry*)_hostPointer;
return *ptr; // Single memory read, no synchronization
}
}
OpenCL: Mapped Pinned Memory
Memory Type: clCreateBuffer with CL_MEM_ALLOC_HOST_PTR
Polling Latency: <1μs (measured on NVIDIA GPU)
Characteristics:
- Pinned allocation via
CL_MEM_ALLOC_HOST_PTR - Persistent mapping for zero-copy access
- Read-only mapping optimizes for CPU polling
Implementation:
// OpenCLTelemetryBuffer.cs
var flags = MemFlags.CL_MEM_ALLOC_HOST_PTR | MemFlags.CL_MEM_READ_WRITE;
_bufferObject = OpenCLNative.clCreateBuffer(
_context, flags,
(nuint)Marshal.SizeOf<RingKernelTelemetry>(),
IntPtr.Zero, out var result);
// Map once at initialization
_mappedPointer = OpenCLNative.clEnqueueMapBuffer(
_commandQueue, _bufferObject,
blocking: true, MapFlags.CL_MAP_READ,
offset: 0, size: (nuint)Marshal.SizeOf<RingKernelTelemetry>(),
numEventsInWaitList: 0, eventWaitList: null,
outEvent: out _, out result);
// Zero-copy poll
public async ValueTask<RingKernelTelemetry> PollAsync()
{
unsafe
{
var ptr = (RingKernelTelemetry*)_mappedPointer;
return *ptr; // Direct read from mapped memory
}
}
Metal: Shared Memory (Unified Memory Architecture)
Memory Type: MTLStorageMode.Shared
Polling Latency: <0.5μs (measured on M1 Max)
Characteristics:
- Unified memory on Apple Silicon
- CPU and GPU share physical memory
- No explicit synchronization required
- Fastest polling latency
Implementation:
// MetalTelemetryBuffer.cs
var length = (nuint)Marshal.SizeOf<RingKernelTelemetry>();
_bufferObject = MetalNative.newBufferWithLength(
_device, length,
MTLResourceOptions.StorageModeShared);
_contentsPointer = MetalNative.bufferContents(_bufferObject);
// Zero-copy poll (fastest on unified memory)
public async ValueTask<RingKernelTelemetry> PollAsync()
{
unsafe
{
var ptr = (RingKernelTelemetry*)_contentsPointer;
return *ptr; // L1 cache hit on unified memory
}
}
CPU: In-Memory Struct
Memory Type: Heap-allocated struct Polling Latency: <0.1μs (L1 cache) Characteristics:
- Simplest implementation
- No GPU interop overhead
- Useful for testing/simulation
Implementation:
// CpuTelemetryBuffer.cs
private RingKernelTelemetry _telemetry;
public void Allocate()
{
_telemetry = new RingKernelTelemetry();
}
public async ValueTask<RingKernelTelemetry> PollAsync()
{
return _telemetry; // Direct struct copy from heap
}
Telemetry API
Three methods are auto-injected into all Ring Kernel wrappers by the source generator:
GetTelemetryAsync
Poll current telemetry snapshot:
// Production monitoring loop (100Hz = 10ms interval)
while (!ct.IsCancellationRequested)
{
var telemetry = await wrapper.GetTelemetryAsync(ct);
_logger.LogInformation(
"Messages: {Processed} processed, {Dropped} dropped, " +
"Queue: {Depth} pending",
telemetry.MessagesProcessed,
telemetry.MessagesDropped,
telemetry.QueueDepth);
await Task.Delay(millisecondsDelay: 10, ct);
}
Performance: <1μs latency, zero GPU synchronization
SetTelemetryEnabledAsync
Enable or disable telemetry:
// Enable telemetry after launch
await wrapper.LaunchAsync(blockSize: 256, gridSize: 128, ct);
await wrapper.SetTelemetryEnabledAsync(enabled: true, ct);
// Disable telemetry (buffer persists, avoids reallocation)
await wrapper.SetTelemetryEnabledAsync(enabled: false, ct);
Lazy Initialization: 64-byte GPU buffer allocated on first enable
ResetTelemetryAsync
Reset all counters to zero:
// Reset counters for phased benchmark
await wrapper.ResetTelemetryAsync(ct);
// Run benchmark phase
await RunBenchmarkPhaseAsync(ct);
// Capture results
var telemetry = await wrapper.GetTelemetryAsync(ct);
_logger.LogInformation(
"Phase completed: {Messages} messages in {Time}ms",
telemetry.MessagesProcessed, phaseTime.TotalMilliseconds);
Performance: Zero overhead, just memset on pinned memory
Recommended Polling Intervals
Excessive polling degrades system performance. Choose intervals based on use case:
| Use Case | Interval | Frequency | CPU Overhead |
|---|---|---|---|
| Background Logging | 100ms+ | <10 Hz | <0.001% |
| Production Monitoring | 10ms | 100 Hz | 0.01% |
| Development/Debugging | 1ms | 1 kHz | 0.1% |
| Stress Testing | 100μs | 10 kHz | 1% |
Analyzer Integration (DC014):
The DC014 analyzer warns about excessive polling:
// ❌ BAD: Tight loop triggers DC014 warning
while (true)
{
var telemetry = await wrapper.GetTelemetryAsync(ct);
// Process telemetry (no delay!)
}
// ✅ GOOD: 10ms delay (100Hz, production-grade)
while (!ct.IsCancellationRequested)
{
var telemetry = await wrapper.GetTelemetryAsync(ct);
await Task.Delay(10, ct); // 10ms = 100Hz
}
Implementation Details
Source Generator Integration
The source generator automatically injects messaging and telemetry APIs into all Ring Kernel wrappers.
Generated Code Example:
// Generated wrapper class (partial)
public sealed partial class MyRingKernelWrapper : IAsyncDisposable
{
private readonly IRingKernelRuntime _runtime;
private readonly Guid _kernelId;
private bool _disposed;
private bool _isLaunched;
// ========== MESSAGE QUEUE METHODS ==========
public async Task EnqueueAsync<TMessage>(
string queueName,
TMessage message,
CancellationToken cancellationToken = default)
where TMessage : IRingKernelMessage
{
ObjectDisposedException.ThrowIf(_disposed, this);
if (!_isLaunched)
{
throw new InvalidOperationException(
"Ring Kernel must be launched before enqueueing messages.");
}
var queue = _runtime.MessageQueueRegistry.GetQueue(queueName);
await queue.EnqueueAsync(message, cancellationToken)
.ConfigureAwait(false);
}
public async Task<TMessage?> DequeueAsync<TMessage>(
string queueName,
CancellationToken cancellationToken = default)
where TMessage : IRingKernelMessage, new()
{
ObjectDisposedException.ThrowIf(_disposed, this);
if (!_isLaunched)
{
throw new InvalidOperationException(
"Ring Kernel must be launched before dequeuing messages.");
}
var queue = _runtime.MessageQueueRegistry.GetQueue(queueName);
return await queue.DequeueAsync<TMessage>(cancellationToken)
.ConfigureAwait(false);
}
// ========== TELEMETRY METHODS ==========
public async Task<RingKernelTelemetry> GetTelemetryAsync(
CancellationToken cancellationToken = default)
{
ObjectDisposedException.ThrowIf(_disposed, this);
if (!_isLaunched)
{
throw new InvalidOperationException(
"Ring Kernel must be launched before polling telemetry.");
}
return await _runtime.GetTelemetryAsync(_kernelId, cancellationToken)
.ConfigureAwait(false);
}
public async Task SetTelemetryEnabledAsync(
bool enabled,
CancellationToken cancellationToken = default)
{
ObjectDisposedException.ThrowIf(_disposed, this);
if (!_isLaunched)
{
throw new InvalidOperationException(
"Ring Kernel must be launched before enabling telemetry.");
}
await _runtime.SetTelemetryEnabledAsync(_kernelId, enabled, cancellationToken)
.ConfigureAwait(false);
}
public async Task ResetTelemetryAsync(
CancellationToken cancellationToken = default)
{
ObjectDisposedException.ThrowIf(_disposed, this);
if (!_isLaunched)
{
throw new InvalidOperationException(
"Ring Kernel must be launched before resetting telemetry.");
}
await _runtime.ResetTelemetryAsync(_kernelId, cancellationToken)
.ConfigureAwait(false);
}
}
Roslyn Analyzers
Six diagnostic rules ensure correct API usage:
DC014: TelemetryPollingTooFrequent (Warning)
Detects excessive polling frequency (>10kHz):
// Triggers DC014 warning
while (true)
{
var telemetry = await wrapper.GetTelemetryAsync(ct);
// No delay - polling at maximum frequency
}
Fix: Add Task.Delay with appropriate interval (1-10ms recommended)
DC015: TelemetryNotEnabled (Error)
Detects GetTelemetryAsync without prior enable:
// Triggers DC015 error
await wrapper.LaunchAsync(256, 128, ct);
var telemetry = await wrapper.GetTelemetryAsync(ct); // ❌ Buffer not allocated
Fix: Call SetTelemetryEnabledAsync(true) after launch
DC016: TelemetryEnabledBeforeLaunch (Error)
Detects telemetry enabled before kernel launch:
// Triggers DC016 error
var wrapper = new MyRingKernelWrapper(runtime);
await wrapper.SetTelemetryEnabledAsync(true, ct); // ❌ No kernel context
await wrapper.LaunchAsync(256, 128, ct);
Fix: Launch kernel before enabling telemetry
DC017: TelemetryResetWithoutEnable (Warning)
Detects reset without prior enable:
// Triggers DC017 warning
await wrapper.LaunchAsync(256, 128, ct);
await wrapper.ResetTelemetryAsync(ct); // ❌ Buffer not allocated
Fix: Enable telemetry before resetting
Performance Characteristics
Message Queue Performance
Measured on RTX 2000 Ada (Compute Capability 8.9):
| Operation | Latency | Throughput | Notes |
|---|---|---|---|
| Enqueue (Block) | 2-5μs | 200K-500K msg/s | Includes atomic operations |
| Enqueue (Reject) | 1-3μs | 300K-1M msg/s | No blocking, immediate return |
| Enqueue (DropOldest) | 1-3μs | 300K-1M msg/s | Eviction adds ~1μs |
| Dequeue | 1-3μs | 300K-1M msg/s | Atomic read + deserialization |
| Deduplication | +5ns | Negligible | FNV-1a hash overhead |
Memory Overhead:
- Queue Structure: 64 bytes (head/tail/capacity/metadata)
- Message Storage:
Capacity × MaxMessageSizebytes - Deduplication:
DeduplicationWindow × 4bytes (hash table)
Example: 256-message queue with 1KB max size = 64 + (256 × 1024) = 262KB GPU memory
Telemetry Performance
Measured across all backends:
| Backend | Polling Latency | Throughput | Hardware |
|---|---|---|---|
| CUDA (pinned) | 0.82μs | 1.2M polls/s | RTX 2000 Ada |
| OpenCL (mapped) | 0.91μs | 1.1M polls/s | RTX 2000 Ada |
| Metal (shared) | 0.45μs | 2.2M polls/s | M1 Max (unified) |
| CPU (in-memory) | 0.08μs | 12.5M polls/s | Intel Core i7 |
Memory Overhead:
- Telemetry Buffer: 64 bytes per Ring Kernel
- Lazy Allocation: Zero overhead when telemetry disabled
Polling Overhead (Production 100Hz):
- 100 polls/second × 0.82μs = 82μs/s = 0.0082% CPU overhead
Scalability
Message Queues:
- Up to 16 named queues per Ring Kernel
- Queue capacity: 16-1024 messages (power of 2)
- Tested with 1M+ messages/second sustained throughput
Telemetry:
- Tested with 100 concurrent Ring Kernels
- Aggregate polling: 10,000 polls/second across all kernels
- Zero contention on unified memory (Metal)
Production Integration
OpenTelemetry Integration
Export telemetry to OpenTelemetry for centralized monitoring:
using OpenTelemetry;
using OpenTelemetry.Metrics;
using System.Diagnostics.Metrics;
public class RingKernelMetrics
{
private static readonly Meter s_meter = new("DotCompute.RingKernel");
private readonly ObservableCounter<long> _messagesProcessedCounter;
private readonly ObservableCounter<long> _messagesDroppedCounter;
private readonly ObservableGauge<int> _queueDepthGauge;
private RingKernelTelemetry _lastTelemetry;
public RingKernelMetrics(MyRingKernelWrapper wrapper)
{
_messagesProcessedCounter = s_meter.CreateObservableCounter(
"dotcompute.ringkernel.messages.processed",
() => (long)_lastTelemetry.MessagesProcessed,
description: "Total messages processed");
_messagesDroppedCounter = s_meter.CreateObservableCounter(
"dotcompute.ringkernel.messages.dropped",
() => (long)_lastTelemetry.MessagesDropped,
description: "Total messages dropped");
_queueDepthGauge = s_meter.CreateObservableGauge(
"dotcompute.ringkernel.queue.depth",
() => _lastTelemetry.QueueDepth,
description: "Current queue depth");
_ = PollTelemetryAsync(wrapper);
}
private async Task PollTelemetryAsync(MyRingKernelWrapper wrapper)
{
while (true)
{
_lastTelemetry = await wrapper.GetTelemetryAsync(default);
await Task.Delay(millisecondsDelay: 100); // 10Hz for OpenTelemetry
}
}
}
// Configure OpenTelemetry
var meterProvider = Sdk.CreateMeterProviderBuilder()
.AddMeter("DotCompute.RingKernel")
.AddPrometheusExporter()
.Build();
Orleans.GpuBridge Integration
Integrate with Orleans actor systems for distributed GPU computation:
using Orleans;
using DotCompute.Abstractions.RingKernels;
public class GpuActorGrain : Grain, IGpuActorGrain
{
private MyRingKernelWrapper _wrapper = null!;
private CancellationTokenSource _monitoringCts = null!;
public override async Task OnActivateAsync(CancellationToken ct)
{
var runtime = GrainFactory.GetGrain<IRingKernelRuntime>(0);
// Launch Ring Kernel
_wrapper = new MyRingKernelWrapper(runtime);
await _wrapper.LaunchAsync(blockSize: 256, gridSize: 128, ct);
// Enable telemetry
await _wrapper.SetTelemetryEnabledAsync(enabled: true, ct);
// Start monitoring loop
_monitoringCts = new CancellationTokenSource();
_ = MonitorTelemetryAsync(_monitoringCts.Token);
await base.OnActivateAsync(ct);
}
public async Task<int> ProcessMessageAsync(ActorMessage message)
{
// Enqueue message to GPU
await _wrapper.EnqueueAsync("commands", message, default);
// Dequeue result
var result = await _wrapper.DequeueAsync<ActorResult>("results", default);
return result?.Value ?? -1;
}
private async Task MonitorTelemetryAsync(CancellationToken ct)
{
while (!ct.IsCancellationRequested)
{
var telemetry = await _wrapper.GetTelemetryAsync(ct);
if (telemetry.MessagesDropped > 0)
{
Logger.LogWarning(
"Grain {GrainId}: {Dropped} messages dropped",
this.GetPrimaryKeyLong(), telemetry.MessagesDropped);
}
await Task.Delay(millisecondsDelay: 1000, ct); // 1Hz for Orleans
}
}
public override async Task OnDeactivateAsync(DeactivationReason reason, CancellationToken ct)
{
_monitoringCts.Cancel();
await _wrapper.DisposeAsync();
await base.OnDeactivateAsync(reason, ct);
}
}
Best Practices
Message Queue Best Practices
Choose Appropriate Backpressure Strategy
- Block: Use for critical messages requiring guaranteed delivery
- Reject: Use for fire-and-forget, best-effort scenarios
- DropOldest: Use for real-time telemetry where latest data matters
- DropNew: Use for historical logging preserving oldest data
Size Queues Appropriately
- Too Small: Frequent overflow, message loss
- Too Large: Excessive memory usage, stale data
- Rule of Thumb: 2× peak message rate × polling interval
- Example: 1000 msg/s × 10ms = 10 messages minimum, use 32-64 for safety
Enable Deduplication Judiciously
- Cost: 5ns per enqueue, negligible for most workloads
- Benefit: Prevents duplicate processing in retry scenarios
- Window Size: Set to 2-4× max expected burst size
- Disable: If messages are guaranteed unique or cost-sensitive
Serialize Efficiently
- Avoid Reflection: Use explicit field serialization
- Fixed-Size Preferred: Reduces buffer management overhead
- Validate Deserialization: Handle partial/corrupted data gracefully
Telemetry Best Practices
Enable Telemetry Only When Needed
- 64-byte GPU allocation per Ring Kernel
- Zero overhead when disabled (lazy initialization)
- Consider production vs. development profiles
Poll at Appropriate Intervals
- Production: 10ms (100Hz) - 0.01% CPU overhead
- Development: 1ms (1kHz) - 0.1% CPU overhead
- Avoid: <100μs (>10kHz) - triggers DC014 warning
Monitor for Anomalies
- MessagesDropped > 0: Queue overflow, increase capacity or adjust backpressure
- QueueDepth consistently high: Producer faster than consumer, scale consumers
- MessagesProcessed stagnant: Ring Kernel may be stalled, check GPU status
Reset Counters Between Phases
- Use
ResetTelemetryAsyncfor phased benchmarks - Provides clean metrics per test iteration
- Zero overhead operation
- Use
Integrate with Observability Stack
- Export to OpenTelemetry for centralized monitoring
- Set up alerts for
MessagesDroppedspikes - Track
MessagesProcessedrate for throughput metrics
Error Handling
// Robust message processing with error handling
public async Task ProcessMessagesAsync(CancellationToken ct)
{
while (!ct.IsCancellationRequested)
{
try
{
// Dequeue with timeout
var cts = CancellationTokenSource.CreateLinkedTokenSource(ct);
cts.CancelAfter(TimeSpan.FromSeconds(5));
var message = await _wrapper.DequeueAsync<MyMessage>("commands", cts.Token);
if (message == null)
{
continue; // Queue empty, retry
}
// Process message
var result = await ProcessMessageAsync(message);
// Enqueue result with backpressure handling
if (!await _wrapper.TryEnqueueAsync("results", result, ct))
{
_logger.LogWarning("Result queue full, message {Id} dropped", message.Id);
}
}
catch (OperationCanceledException)
{
_logger.LogInformation("Processing cancelled");
break;
}
catch (Exception ex)
{
_logger.LogError(ex, "Error processing message");
await Task.Delay(millisecondsDelay: 100, ct); // Back off on errors
}
}
}
Summary
The Ring Kernel messaging and telemetry subsystem provides production-grade GPU communication and observability:
Messaging Features:
- Lock-free atomic message queues with 4 backpressure strategies
- Cross-backend support (CUDA, OpenCL, Metal, CPU)
- Deduplication, named queues, and flexible configuration
- Measured throughput: 200K-1M messages/second
Telemetry Features:
- Sub-microsecond zero-copy polling (<1μs on CUDA/OpenCL, <0.5μs on Metal)
- Lazy initialization with 64-byte GPU buffers
- Atomic counters for thread-safe concurrent updates
- OpenTelemetry integration for production monitoring
Developer Experience:
- Auto-injected APIs via source generators
- Roslyn analyzers (DC014-DC017) for real-time IDE feedback
- Comprehensive documentation and examples
- Orleans.GpuBridge integration for distributed actor systems
These features enable sophisticated distributed GPU applications, message-driven architectures, and observable long-running GPU workloads with negligible performance overhead.